skip to main content


Search for: All records

Creators/Authors contains: "Jang, Hokyung"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
    Abstract Capabilities for continuous monitoring of pressures and temperatures at critical skin interfaces can help to guide care strategies that minimize the potential for pressure injuries in hospitalized patients or in individuals confined to the bed. This paper introduces a soft, skin-mountable class of sensor system for this purpose. The design includes a pressure-responsive element based on membrane deflection and a battery-free, wireless mode of operation capable of multi-site measurements at strategic locations across the body. Such devices yield continuous, simultaneous readings of pressure and temperature in a sequential readout scheme from a pair of primary antennas mounted under the bedding and connected to a wireless reader and a multiplexer located at the bedside. Experimental evaluation of the sensor and the complete system includes benchtop measurements and numerical simulations of the key features. Clinical trials involving two hemiplegic patients and a tetraplegic patient demonstrate the feasibility, functionality and long-term stability of this technology in operating hospital settings. 
    more » « less
  5. Abstract

    This paper describes deterministic assembly processes for transforming conventional, planar devices based on flexible printed circuit board (FPCB) platforms into those with 3D architectures in a manner that is fully compatible with off‐the‐shelf packaged or unpackaged component parts. The strategy involves mechanically guided geometry transformation by out‐of‐plane buckling motions that follow from controlled forces imposed at precise locations across the FPCB substrate by a prestretched elastomer platform. The geometries and positions of cuts, slits, and openings defined into the FPCB provide additional design parameters to control the final 3D layouts. The mechanical tunability of the resulting 3D FPCB platforms, afforded by elastic deformations of the substrate, allows these electronic systems to operate in an adaptable manner, as demonstrated in simple examples of an optoelectronic sensor that offers adjustable detecting angle/area and a near‐field communication antenna that can be tuned to accommodate changes in the electromagnetic properties of its surroundings. These approaches to 3D FPCB technologies create immediate opportunities for designs in multifunctional systems that leverage state‐of‐the‐art components.

     
    more » « less
  6. Abstract

    Capabilities for controlled formation of sophisticated 3D micro/nanostructures in advanced materials have foundational implications across a broad range of fields. Recently developed methods use stress release in prestrained elastomeric substrates as a driving force for assembling 3D structures and functional microdevices from 2D precursors. A limitation of this approach is that releasing these structures from their substrate returns them to their original 2D layouts due to the elastic recovery of the constituent materials. Here, a concept in which shape memory polymers serve as a means to achieve freestanding 3D architectures from the same basic approach is introduced, with demonstrated ability to realize lateral dimensions, characteristic feature sizes, and thicknesses as small as ≈500, 10, and 5 µm simultaneously, and the potential to scale to much larger or smaller dimensions. Wireless electronic devices illustrate the capacity to integrate other materials and functional components into these 3D frameworks. Quantitative mechanics modeling and experimental measurements illustrate not only shape fixation but also capabilities that allow for structure recovery and shape programmability, as a form of 4D structural control. These ideas provide opportunities in fields ranging from micro‐electromechanical systems and microrobotics, to smart intravascular stents, tissue scaffolds, and many others.

     
    more » « less